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Metraet--A one-dimensional model for two-phase flow in packed particle beds is presented. Compared 
with earlier models, the improved model takes into account the effect of interracial drag forces between 
liquid and gas, which are of considerable influence in beds of coarse particles. The model is based on the 
momentum equations for separated flow, which are closed by empirical relations for the waft shear stress 
and the interfacial drag. The model is applied to the situation of a one-component two-phase flow in an 
internally heated bed of uniform spherical particles. An increased dryout heat flux is predicted if liquid 
enters the bed through the bottom. 

I N T R O D U C T I O N  

Two-phase flow through packed beds of coarse particles has become of great interest in the power 
and process industry. A special application emerged from analysing the hypothetical core meltdown 
accident of light-water reactors (LWRs). During the course of such an accident fuel rods may be 
fragmented into particles of irregular shape if the coolant re-enters the damaged core at a very high 
temperature. Hobbins et  al. 0982) found that particle size distributions vary strongly with the 
severity of the rod damage. In particular, coarse particles can be produced if only a thermal and 
chemical degradation of the rods occurred. The particles are likely to settle on lower and cooler 
core structures, eventually, at an advanced stage of the accident, even on structures outside the 
pressure vessel. The particle beds generated in this way are saturated by the coolant. As these 
particles are still heated by the radioactive decay of the fission products, boiling of the coolant will 
occur. In order to prevent dryout and finally melting of the debris a two-phase flow model is needed 
to predict the maximum allowable heat flux through the top of the debris bed. 

FUNDAMENTAL EQUATIONS 

A laminar two-phase flow model has already been cited by Scheidegger (1974). Following 
Scheidegger (1974) the pressure drop of a one-dimensional, laminar two-phase flow through a bed 
of packed particles can be evaluated if the Darcy law is applied to each phase separately. In the 
case of vertical flow we obtain 

and 

~PL . /~L v 
~2 JrpLg + ~ L L  L=O [l] 

aPG /~O ~---'~ "4- PGg Jr ~ V G = O. [2] 

Here the index L denotes the liquid and the index G denotes the gas phase, v is the superficial 
velocity,/~ and p are the viscosity and the density, respectively, g is the acceleration of gravity and 
p is the pressure. The actual permeability of the bed is composed of the permeability K of a 
single-phase flow and of the relative permeabilities KL and K~, respectively. In the case of uniform 
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spherical particles the permeability K can be correlated with the particle diameter d and the 
porosity E: 

d 2 •3 

K = 15---6 (1 - E) ----------~' [31 

For non-spherical or non-uniform particles K is an empirical constant. 
The relative permeabilities KL and K~ are functions of the effective saturation and of the particle 

shape. This effective saturation is defined as 

S* - -  S 0 
s = 1 - So [4] 

where s* is the "true saturation", which is the volume fraction of liquid in the space between the 
particles, and So is the "residual saturation" which remains within the bed if the bed is drained. 

The relative permeabilities have been determined by Brooks & Corey (1966) for various sands. 
For uniform spherical particles their result can be approximated as 

KL = s3 [5] 

and 

KG = (1 -- s) 3 . [6] 

Because of capillary forces the pressure PG within the gas phase is generally higher than the 
pressure PL in the liquid phase. This pressure difference has been correlated by Leverett (1941) as 

p c  - PL ---- ~ J ( s ) ,  [71 

where ~r is the capillary constant and J is a function of the effective saturation and of the particle 
shape. In most applications J is of the order of ~ 1. Inserting [7] into [1] and [2] and subtracting 
[2] from [1], we obtain. 

[-~ dJds  #L v #G v o=0. [81 

If ds/dz is assumed to be of the order of 1/h, where h is the total bed height, and if dJ/ds is assumed 
to be of the order of ~< 1, the capillary pressure term can be neglected against the gravity term if 

~r ~ '~ (PL -- Po)g. [91 

Particles which comply with this restriction are called coarse particles. They are considered here 
exclusively. As only the product of the particle diameter, which is involved in the permeability, and 
the bed height enter restriction [9], the model can also be applied to small particles if the bed is 
sufficiently deep. 

The laminar flow model is closed by the balance equations for mass and energy: 

d 0 
£ (1 - -  S O ) ~  LDLS "q- pG(1 - -  S)] "[- ~ (PLVL + pG/.)G) = 0 [10] 

and 

~3 -- S)] + ~---f (PGVG) = QG, [11] c (1 - So) ~ [ p G ( I  

where Q is the volumetric heat source and hLG is the latent heat of vaporization. These equations 
are independent of the particle size or shape. 

EXTENSION OF THE MODEL 

As in single-phase flow, the pressure drop changes continuously from laminar to turbulent flow 
conditions with increasing particle size. Therefore Lipinski (1982) extended the laminar flow model 
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by adding a turbulent pressure-drop term to [I] and [2]. An even more realistic model requires an 
interracial drag force FLO between liquid and gas to be included in these momentum equations. This 
has been proposed by Tutu et al. (1983). For this case the extended momentum equations read 
as 

~PL /ZL ~ FLG = 0 [12] ~---~- +PLg + ~"~L oL + VLIVLI----7- 

and 

apG /to PG FLO 
+ PGg +~oG+~'~GVGIVGI + 1--S =0. [13] OZ 

Here t/ accounts for the turbulent pressure drop of a single-phase flow through the bed. It has. 
occasionally been termed the "passability" of the bed. For uniform spherical particles this 
passability has been correlated by Ergun (1952) as 

d (3 
~/= 1.75 1 - E" [14] 

For particles which are not spherical or which differ in size, ~/is a further empirical constant. The 
relative passabilities r/L and ~/G are functions of the effective saturation and of the particle shape. 
Lipinski (1982) assumed that 

I~L = s 3  [15] 

and 

r/G = (1 -- S) 3. [16] 

In a recent publication Lipinski (1984) changed the exponents to 5 on the basis of a theoretical 
work by Reed (1982), but no experimental data are available to validate these theoretical functions. 
Therefore, in our investigation the functional dependence on the saturation has been determined 
by measurements, on which we report in the following section. 

For modelling the inteffacial drag force FLG the following considerations are made. 
The force FLG can only be a function of the following four relevant quantities: 

--the buoyant force 

(PL - -  PG ) g ;  

--the viscous forces in the liquid phase with respect to the relative velocities o f  the phases 

K 

--the inertia in the liquid phase with respect to the relative velocity 

PL 1 
~l s 

--the capillary force 

¢7 

In these forces only the relative velocities occur since an interfacial drag is absent if both 
components have the same velocity. Moreover, the natural length scale for modelling characteristic 
forces is the panicle diameter or, more generally, the permeability and the passability of the bed. 

The physical effect creating the viscous force is the shear layer in a separate two-phase flow 
between the particles. Inertial forces are relevant in dispersed two-phase flow in particle beds, in 
particular, if the bubbles are of similar size to the interstitial places of the bed. However, no attempt 
was made to model the microscopic details of the flow. 

The buoyant force has also been added to these forces because it is the driving force of the gas 
in our case of coarse particles. Therefore, [12] and [13] have to be scaled with the buoyant force, 
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in order to obtain dimensionless equations in which relevant terms are of the same order of  
magnitude. 

Viscous forces and inertia of  the gas phase are small compared to the forces discussed above 
and are therefore neglected. There are strong indications from an experiment by Naik & Dhir 
(1982) that an interfacial drag force is only relevant in beds of  coarse particles. In coarse-particle 
beds the hydrodynamic interaction is dominated by the turbulent character of the flow; therefore, 
it is assumed that mainly inertia forces enhance the momentum transfer between both phases. On 
the other hand, capillary forces will separate the flow and thus reduce the momentum transfer. In 
the case of  bubbly flow, which is expected at high saturation, the viscosity of the liquid may also 
increase the momentum transfer; however, at lower saturations viscous forces may even stabilize 
a separated flow and thus reduce the momentum transfer. At moderately high saturations it is 
expected that the viscosity effects compensate each other. If, for a model of first-order accuracy, 
only the dominant parameters are taken into account, the interfacial drag force FLG, scaled with 
the bouyant force, can be modelled such that it depends only on the ratio of inertia/capillary forces 
and on the effective saturation. The latter effect is expressed by a function W(s) which has to be 
determined empirically. We obtain 

FLG =W(s) pLK(VG ~]2. [17] 
( P L - - P G ) g  ~ 1 --S 

In agreement with Tutu et al. (1983), FLG is proportional to the square of  the relative velocity. 
However, the dependence on capillary forces is stronger in our model. 

EMPIRICAL FUNCTIONS FOR SPHERICAL PARTICLES 

The function W(s), which was introduced to describe the intcrfacial drag force, and the relative 
passabilities ~/L(S) and ~/c(s) are empirical functions which have not been determined yet. Since 
many experiments in this context have been performed with uniform spherical particles, only these 
particles have been used during the tests. 

Experiments have been performed employing the following test section, shown in figure 1. 
Almost uniform spherical glass beads of  3 or 7 mm dia were packed into a vertical Plexiglas tube 

displaced 
hquld 

pump ~ 

flow meter flow meter 
{iqu=d a=r 

Figure 1. The test section. 
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Table 1. Properties of the particle beds used in the test section 

Experiment 1 Experiment 2 

Mean particle diameter (mm) 3 7 
Porosity 0.378 0.412 
Permeability (m 2) 5.8 X 10 .9 4.38 x 10 .7 
Passability (m) 1.24 × 10 -4 3.87 × 10 -3 
Effective particle diameter (ram) 2.5 5.7 
Residual saturation in water 0.085 0.024 
Residual saturation in 

4 8 %  ethanol  0 .068  - -  

91 

of  110 mm i.d. and 1 m height. Air and liquid flow rates were measured separately before the two 
fluids were introduced through a porous plate at the bottom of  the bed. The bed was fixed with 
a grid at the top to prevent fluidization. The pressure drop within the bed was measured with 
14 pressure taps of  2 mm dia which were connected with pressure gauges. The saturation was 
determined from the volume of  liquid displaced. Water and an aqueous solution of  48% ethanol 
were used as test liquids. The tests were run at 20°C and 1 b. 

The permeability K and the passability t /were determined by pressure-drop measurements of  a 
single-phase flow using water only. The results are listed in table 1. These permeabilities and 
passabilities are smaller than those obtained from [3] and [14] using the mean particle diameter. 
Thus, an effective particle diameter can be defined which corresponds to the measured permeability 
and passability. This effective diameter is smaller than the mean diameter, due to small variations 
in the particle diameters; only this effective diameter is listed in figures 2-4. 

The function W(s) was determined for zero liquid flow rate. Using [12] and [17] with VL = 0, 
one obtains 

[~pL/bZ + PLg ] (1 -- S)2S ~1~ 
W (s ) = v~ PL(PL -- pa)gK" [18] 

In figure 2 the experimental results for W(s) are plotted as a function W ( s ) / ( l - s )  vs the 
saturation s. Vertical bars indicate the experimental error bounds. For  moderate effective 
saturations of  about  0.6 the same function Wwas reproduced for different liquids and particle sizes. 
These facts support the assumptions made in [17]. As the viscosity of  48% ethanol is higher by 
a factor 2.8 than the viscosity of  water, a higher value for W(s) was obtained with ethanol at 
saturations >0.6. For  values <0.5, opposite behaviour can be seen. This result is in accordance 
with the considerations above concerning the influence of  viscosity. 
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Figure 2. Experimental result for the function W(s). 
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Figure 3. Experimental result for the relative pas- 
sability ~TL of the liquid phase. 
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Figure 4. Experimental result for the relative pas- 
sability % of the gas phase. 

For all experiments, W(s) can be fitted as 

W ( s )  = W o s m ( l  - s); [19] 

W0 = 350 and m = 7 can be taken as mean values. 
The relative passabilities r/L and % have been determined using different liquid flow rates. They 

can be calculated from [12], [13] and [17], with the relative permeabilities KL a n d / ~  from [5] and 
[6], and with the function W(s) from [19]. However, closer approximations for W0 and m have 
been used in [19] for individual fluids and particle sizes. 

The result for the relative passability r/L of  the liquid phase is shown in figure 3. It can be 
approximated as 

r/L = D, [20] 

which agrees well with the new assumptions of  Lipinski (1984). 
The result for the relative passability % of  the gas phase is plotted vs 1 - s  in figure 4. For 

saturations below s --0.7 it can be approximated as 

,7~ = (l  - s ) t  [21] 

For saturations above s ffi 0.7 the experimental data slightly exceed this curve. In this range % can 
be better approximated by 

% = 0.1 (1 - s)4. [22] 

However, for predicting the dryout heat flux of an internally heated debris bed, this latter range 
of saturations is not relevant. The experimental results for % are slightly below the recently 
assumed correlations of  Lipinski (1984). 

APPLICATION TO I N T E R N A L L Y  HEATED DEBRIS BEDS 

In the following section our new model, which has been closed by our experimental findings, 
will be applied to a one-component two-phase flow in internally heated debris beds, such as 
discussed for certain hypothetical core meltdown accidents of  LWRs. 

For the calculations the balance equations for mass, [10], and energy, [11], h a v e  t o  be added to  
the momentum equations [12] and [13]. Only steady-state conditions will be considered. Further- 
more, the volumetric heat source {2 will be assumed constant. Then [10] and [11] can be integrated 
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to yield 

and 

pLVL "4- PGVG = pLVL0 + PGVGo [23] 

QZ 
PoVo ffi ~LC + pGVc~, [24] 

where VL0 and v ~  are the superficial velocities of  liquid and vapour, respectively, at z = 0 at the 
bottom of  the bed. This bottom is assumed to be adiabatic, so Vc, o = 0, since no vapour enters the 
bed from below. 

The liquid velocity is zero in the case of  an impermeable bottom; this is called a top-fed condition 
because the evaporated liquid can only be replaced through the top of  the bed. This case is 
considered first. 

Restricting ourselves to the case of  coarse particles, we can neglect the pressure difference 
between the liquid and vapour. Inserting [23] and [24] into [12] and [13] and subtracting [13] from 
[12] we obtain the following quadratic equation for the heat flux Qz: 

VL 1 1 "~QZVG ~p__9_GI+I+ W(s) PL 
,1o 

PL h ~ P o ' l  = (.OL - po)g, [25] 

where v is the kinematic viscosity. 
A special solution of  [25] is shown in figure 5 for the case of  3 nun spherical particles saturated 

with water at I b. There are two solutions for the heat flux Qz if Qz < 84 W/cm 2. If the bed was 
initially filled with liquid only the states of  the fight branch are realized. Then, for a fixed heat 
source Q, the right branch shows the vertical distribution of  the saturation. If Qz exceeds a 
maximum, which is called the dryout heat flux, no steady-state solution of  Qz exists. In this case 
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Figure 5. Saturation distribution of an internally 
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a transient consumption of the liquid reservoir between the two branches will finally lead to a dry 
region in the bed. This phenomenon was first explained by Hofmann (1982). As the vertical 
coordinate z cannot exceed the bed height h, the dryout heat flux is equal to the heat flux Qh 
through the top of the bed under dryout conditions. 

This dryout heat flux occurs at saturation <0.3. As we can seen in figure 2 the interfacial drag 
at these saturations is negligible. Therefore the dryout heat flux of a top-fed bed remains unchanged 
if interfacial drag forces are included. 

In comparison with the predictions by Lipinski (1982, 1984) the dryout heat flux obtained from 
our model is smaller. This is only due to the different relative passabilities used by Lipinski and 
ourselves, Moreover, the saturations in the right branch are smaller than those predicted by 
Lipinski. This effect, however, is also caused by the lack of interfacial drag forces in his model. 

Restricting our considerations to beds of uniform spherical particles, we plot in figure 6 the 
dryout heat flux for water at 1 b vs the particle diameter. For the calculations the porosity was 
assumed to be c = 0.4. Three predictions are compared with various experiments from the 
literature. Only those experimental data have been included which comply with restriction [9]. 
According to figure 5, our predicted dryout heat flux is smaller than the values proposed by 
Lipinski (1982, 1984). 

Compared with the experimental results our model agrees well with a lower bound of the dryout 
heat flux found in experiments. This agreement seems to be reasonable considering that an 
increased dryout heat flux in the experiments can be explained by a residual amount of capillary 
forces, which have been neglected in our model, and by a loosening of the particles in the upper 
part of the bed which is caused by the rising vapour. The latter effect is also not accounted for 
in our model. 

Information about the influence of interfacial drag forces can be obtained, if debris beds are 
considered which are arranged on permeable support structures. In this case vL0 is different from 
zero. The arrangement is called a bottom-fed condition. The same procedure as for top-fed 
conditions, but with vL0 = 0, yields the following quadratic equation for the heat flux Qz: 

v L 1 Qzv G /2LI)LO.~" _ _ _ _  - -RLt )L[ t~L[  

-~o-~L + KhLG ~ rl~oPGh~o ~I~IG 

WK(P -Po) PL 1 [ 1 Q, 
- -  - = (PL -- PG)g, + o'r/ s (1 -- s)  "(1 s)  pGhLG 

with 
Qz 

vL = - ~  + vL0. [26] 
Pc3hLG 

The solution of this equation can be inserted into [12] so that the pressure gradient can be 
determined at each elevation. After integration we obtain the vertical pressure distribution within 
the bed. This pressure distribution is shown in figure 7 for uniform spherical particles of 4.763 mm 
dia, saturated with Freon-113 at 1 b. The pressure has been scaled with the hydrostatic pressure 
of the liquid. The heat flux through the top of the bed can be obtained from the exit quality xc, 
indicated in figure 7, as 

Q h  = pohLotJL0Xe. 

Comparison with results based on the model of Lipinski (1984) shows that the effect of interracial 
drag forces is to reduce the pressure of the two-phase mixture remarkably below the hydrostatic 
pressure of the liquid. This effect is supported by the experimental results of Tung et al. (1983). 
Predictions based on a homogeneous model of Naik & Dhir (1982) overestimate the interracial 
drag. 

Further support for the validity of our model is provided by an experiment of Naik & Dhir 
(1982). In figure 8 the total pressure drop across a bed of 4.763 mm spheres, saturated with water 
at 1 b, is plotted vs the fluid velocity vL0 at the bottom of the bed. Data are shown for various exit 
qualities xc at the bed surface. In agreement with our model the experimental pressure drop falls 
more than 30% below the hydrostatic pressure of the liquid, which is in clear contradiction with 
predictions if the model of Lipinski (1984) is applied, which neglects the inteffadal drag. 
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This reduction in the total pressure drop could significantly enhance the coolability of a debris 
bed in the case of core meltdown accidents in LWRs. It has been demonstrated by Hofmann (1982) 
and Stevens & Trenberth (1982) that a permeable support structure beneath the bed increases the 
dryout heat flux, if the flow entering at the bottom is driven by the hydrostatic pressure of the l iquid 
in a downcomer surrounding the bed. 

In figure 9 the dryout heat flux of a bottom-fed debris bed of 3 mm spheres, saturated with water 
at 1 b, is given as a function of the water level in the surrounding annulus, subsequently called 
downcomer. The dryout heat flux has been scaled with the dryout heat flux of a top-fed bed on 
an impermeable adiabatic plate, and the downcomer height has been scaled with the height of the 
bed. Our model is supported by an experiment of Hofmann (1982), which is also plotted in figure 
9. In the absence of interracial drag forces, as assumed by the model of Lipinski (1984), the increase 
in the dryout heat flux is underestimated if the normalized downcomer height is of the order of 
~<1. 

SUMMARY AND CONCLUSION 

A one-dimensional model for two-phase flow through beds of packed particles has been 
developed. Compared with earlier models it includes in addition the influence of interracial drag 
forces between liquid and gas. These forces are expressed by a simple relation containing the 
dominant ratio of liquid inertia/capillary forces. The influence of liquid viscosity is found to be 
of less importance and is therefore neglected. In an initial stage the model is restricted to coarse 
particles or deep beds so that the pressure difference between both phases is negligible. In this case 
the saturation distribution can be determined algebraically. 

The model can be applied to particles of any shape provided that the empirical functions, which 
the model needs, are available. These functions depend only on the effective saturation. They are, 
in general: 

-- the relative permeabilities Kg(s) and KG(s), which are important in beds of fine 
particles and in the case of slow velocities; 
- - the relative permeabilities r/L(S) and qG(S), which are important in beds of coarse 
particles and in the case of high velocities; 
- - the Leverett function J(s), which is important in shallow beds of fine particles; 
-- the interracial drag function W(s), which is important in beds of coarse particles, 
especially in the case of high saturation. 

For the special case of uniform spherical particles these functions have been determined 
experimentally. 

Although these functions were obtained using water and air and an aqueous solution of 48% 
ethanol and air, they agree well with earlier experimental results obtained with water and vapour 
and with Freon-113 and Freon vapour at 1 b. This agreement confirms the validity of our model 
for arbitrary fluids. 

The coolability of an internally heated debris bed has been discussed, which is expected after 
a core melt down accident in an LWR. If this bed is arranged on an impermeable, adiabatic support 
structure, the dryout heat flux is predicted to be a little smaller than, but similar to, recent 
predictions by Lipinski (1984). The interracial drag has no influence on this dryout heat flux. 
However, if additional fluid can be supplied through the bottom of the bed, interfacial drag forces 
may significantly increase the downcomer-driven bottom-inlet mass flux, and hence the coolability 
of the bed. In this case our model is in a better agreement with experimental results than the model 
of Lipinski (1984), which does not include an interfacial drag. 

Acknowledgements--The authors wish to thank T. Kasmer for preparing the test section and E. Wiens for 
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